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Abstract

Intelligent Tutoring Systems (ITS) are widely applied in K-12
education to help students to learn and master skills. Knowl-
edge tracing algorithms are embedded in the tutors to keep
track of what students know and do not know, in order to
better focus practice. While knowledge tracing models have
been extensively studied in offline settings, very little work
has explored their use in online settings. This is primarily be-
cause conducting experiments to evaluate and select knowl-
edge tracing models in classroom settings is expensive. We
explore the idea that machine learning models that simulated
students might fill this gap. We conduct experiments using
such agents generated by Apprentice Learner (AL) Archi-
tecture to investigate the online use of different knowledge
tracing models (Bayesian Knowledge Tracing and the Streak
model). We were able to successfully A/B test these different
approaches using simulated students. An analysis of our ex-
perimental results revealed an error in the implementation of
one of our knowledge tracing models that was not identified
in our previous work, suggesting AL agents provide a prac-
tical means of evaluating knowledge tracing models prior to
more costly classroom deployments. Additionally, our anal-
ysis found that there is a positive correlation between the
model parameters achieved from human data and the param-
eters obtained from simulated learners. This finding suggests
that it might be possible to initialize the parameters for knowl-
edge tracing models using simulated data when no human-
student data is yet available.

Introduction
Intelligent Tutoring Systems (ITS) are used within K-12 ed-
ucation to improve learning outcomes. In addition to pro-
viding students with scaffolding and feedback, tutoring sys-
tems utilize an approach called knowledge tracing to esti-
mate what students know and do not know. When combined
with a problem selection policy (e.g., Rollinson and Brun-
skill 2015), knowledge tracing enable tutors to support mas-
tery learning and to focus students practice where it is most
needed (i.e., on the skills they do not yet know rather than
the skills they already know). While many studies have ex-
plored knowledge tracing for offline evaluation (e.g., fitting
knowledge tracing models to large, existing data sets), there
is comparatively little work on evaluating these algorithms
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in online settings (e.g., evaluating how well these algorithms
estimate students’ mastery from just a few data points and
decide when to stop giving them additional problems).

We aim to understand which knowledge tracing mod-
els yield the greatest mastery learning efficiency in online
settings. Additionally, for more complicated models like
Bayesian Knowledge Tracing (BKT, Corbett and Anderson
1994), we want to find out how model parameters can be se-
lected before any data is collected. To investigate knowledge
tracing models in online settings, the conventional approach
would be to run A/B testing in a K-12 classroom. However,
this is a time consuming and labor intensive process.

To meet our need for multiple A/B experiments to investi-
gate our knowledge tracing questions, we introduce a novel
way of using computational learning models, or simulated
student models that learn from interactions with a tutor just
like human students do, to simulate our knowledge tracing
experiments. We use the Apprentice Learner (AL) architec-
ture (MacLellan et al. 2016), a machine-learning framework
that aims to model how humans learn from examples and
feedback. By leveraging AL agents to conduct simulated
A/B experiments, we can compare different knowledge trac-
ing approaches in online settings.

To explore the feasibility of this approach, we conducted
a simulated A/B experiment where we compare BKT to the
Streak model, a much simpler model that estimates that stu-
dents have mastered a skill when they get it right three times
in a row. We also compared these approaches with a base-
line approach that gives students all available problems (no
knowledge tracing). Our simulation experiments show that
both BKT and Streak model stop before giving all the prob-
lems, but that the BKT model is much more aggressive than
the Streak model and seems to assume students have mas-
tered skills much earlier than expected. Upon further inspec-
tion, our simulation studies revealed a bug in our underly-
ing implementation of BKT. This finding demonstrates that
these simulation studies might serve a valuable role in test-
ing knowledge tracing models before more costly classroom
deployments.

In addition to evaluating different knowledge tracing ap-
proaches, we also explored the use of simulated data from
these experiments to estimate initial parameters for the
BKT model. Prior to collecting human data, knowledge
tracing parameters are often set to reasonable hand-picked



defaults—an approach that is guesswork at best. A slightly
better approach is to run a pilot study where no knowledge
tracing is used to gather data to estimate knowledge tracing
parameters for subsequent deployments. However, this also
requires additional time and labor. In our analysis of simula-
tion data, we found that the BKT parameters estimated from
the simulated data have a significant correlation to the BKT
parameters estimated from real human data, suggesting that
our simulated student approach might provide a more in-
formed way of estimating knowledge tracing model param-
eters when no human data is available.

Background
Knowledge Tracing
The main purpose of knowledge tracing is to keep track of
students’ learning on several skills and record time series
data. Knowledge tracing models take the Knowledge Com-
ponents (KCs) and students’ response results (correct or in-
correct) to predict the possibility that students can correctly
solve a new problem containing the same skills.

BKT (Corbett and Anderson 1994) is a well-known
knowledge tracing algorithm that can predict if students’
have learned a skill given their current knowledge state. For
each skill, a student can be in one of the two possible knowl-
edge states: “unknown” or “known”. A binary response (cor-
rect or incorrect) is generated at each opportunity a student
practices a skill (Fancsali, Nixon, and Ritter 2013). It is typi-
cally assumed that students never forget what they have mas-
tered (Rollinson and Brunskill 2015). If a student reaches
95% probability being in the known state of a skill, the skill
can be marked as being mastered by the student. With these
assumptions, the BKT model has four parameters.

• P(L0): initial probability that a skill is already known by
students.

• P(T): probability that students learn the skill.

• P(G): probability that students produce a correct response
despite not knowing the skill (“guessing”).

• P(S): probability that students produce an incorrect re-
sponse despite knowing the skill (“slipping”).

Researches have created multiple variants of the original
BKT model. (Yudelson, Koedinger, and Gordon 2013) intro-
duced an approach to building individualized BKT models
that can take student differences in initial mastery probabil-
ities and skill learning probabilities into account. (Nedun-
gadi and Remya 2015) suggested an enhanced BKT model
called the PC-BKT (Personalized and Clustered) with indi-
vidual priors for each student and skill, and dynamic cluster-
ing of students based on changing learning ability. Both of
the above-mentioned procedures aimed to improve the pre-
diction results comparing to the original BKT model, but
limited comparisons have made between BKT and other stu-
dent models.

In addition to the BKT models, another popular model is
the Streak model. Also known as “three-in-a-row” (Heffer-
nan and Heffernan 2014), it is a relatively simple and in-
tuitive model since it only has one parameter (how many

correct answers in a row equates to mastery). It was first ap-
plied in ASSISTments and the key idea was to keep giving
the student questions until some proficiency threshold was
reached. The default setting was “three correct in a row” but
this could be manipulated by teachers.

Finally, it is worth noting that knowledge tracing is not a
required procedure in designing and building tutors. Many
studies and tutors just have a fixed problem sequence. How-
ever, we hypothesized that knowledge tracing (specifically
the “When-to-stop” strategy) is one of the main components
of tutoring systems that makes them effective.

Computational Models of Learning
The Apprentice Learner (AL) Architecture is a framework
for modeling human learning from demonstrations and feed-
back in digital environment (Weitekamp et al. 2020). The
simulated students we employed in the experiments were
implemented within AL. Simulated students (AL agents)
can learn as human students do through demonstrations and
feedback provided by intelligent tutor systems. AL agents
can support tutor technology development (MacLellan et al.
2016). We aim to explore their use for testing different
knowledge tracing models.

There are several mechanisms included in the modular de-
sign of AL. The how-learning mechanism is the first learn-
ing mechanism employed when an AL agent receives a train-
ing example. This mechanism enables the agent to search
through compositions of primitive and prior skills (e.g. ad-
dition, subtraction, multiplication and division) to explain
the worked examples it receives. In then generalizes these
explanations into new skills. In this study we are using the
fraction arithmetic tutor, which covers skills such as “con-
verting the denominator” and “converting the numerator” in
addition to singular arithmetic skills. Secondly, the where-
learning mechanism is responsible for generalizing values
in the demonstrations it receives to identify relational pat-
terns for binding inputs from tutor interface elements. For
example, an AL agent would learn patterns for extracting the
first and second numbers from the tutor interface when there
is an operator sign between them (MacLellan 2017). Lastly,
the AL agents use the when-learning mechanism to learn
when it is appropriate for a skill to be applied. This mech-
anism is built upon classification algorithms and the agent
updates learned classifiers based on the feedback (correct or
incorrect) it receives on its problem solving attempts. For a
complete description of AL, see the work by MacLellan and
Koedinger (2020).

The majority work in the field of educational data min-
ing focuses on building mathematical, predictive models of
learning. In contrast, the Apprentice Learner Architecture
can actually perform the tasks by learning from demonstra-
tions and feedback. Therefore, one approach we explore in
this paper is applying the computational learning models to
simulated students in order to test the algorithms prior to
more costly humans studies.

Simulation Studies
In this study, we used the “WhereWhenHowNoFoa” agent
in the AL architecture to run the simulations (MacLellan



Figure 1: The HTML interface for the fraction arithmetic tutor that the Apprentice Learner agents interact with.

and Koedinger 2020). We created 30 simulated students (AL
agents) to solve fraction arithmetic problems (see Figure 1).
Three different types of problems were included in the ex-
periment. For each question type, there are 80 unique ques-
tions.

• Add Different (AD): add when denominators are different

• Add Same (AS): add when denominators are the same

• Multiplication (M): multiply the two fractions together

We applied five models in our simulation: BKT default,
Random, Streak, BKT random and BKT human. The first
three models BKT default, Random, and Streak differ in the
way they select the next problem to give to a simulated stu-
dent. For the parameters in BKT default, they were set to
reasonable defaults based on our prior experience with BKT
models. We set P(L0) to 0.1, P(T) to 0.05, P(G) to 0.05
and P(S) to 0.02. These parameters are identical for each
KC. The last two models BKT random and BKT human
are similar to BKT default, but have different parameters.
BKT random and BKT human parameters were obtained
from fitting BKT model over “Fraction Addition and Multi-
plication” dataset accessed via DataShop (Koedinger et al.,
2010). and data log generated by Random model in Learn-
Sphere (Koedinger et al. 2010).

During the experiment process, we ran each of the five
models over 30 simulated students and analyzed the results.
For these experiments, we created KC models with a com-
bination of “Problem Type” and “Selection”. There are 14
KC models in our analysis, 8 for type AD, 3 for type AS and
3 for type M (each field for each problem type constitutes a
unique skill). As the Additive Factors Model (AFM) is of-
ten used to examine learning curves from existing data (Cen
2009), we used pyAFM (MacLellan, Liu, and Koedinger
2015) (a python implementation of AFM) to predict the
probability that students can get next step correct with the
respective skill at the end of their practice. This provided an
independent means for us to estimate how well each knowl-
edge tracing approach did at appropriately recognizing when
students had achieved mastery.

Discussion
For each of the five models, we first looked at the numbers of
questions included in the training, see Figure 2. The Random
model administers all of the 80 problems for each type. The
Streak model gives around 24 problems for AD, 19 prob-
lems for AS and 16 problems for M. BKT default model

Figure 2: An overview of the number of problems included
in the training for each of the five models.

Figure 3: The Learning Curve for BKT random model, Ran-
dom model and Streak model. X-axis is the number of op-
portunities and Y-axis is the error rate.

gives less than 5 problems in each type, while BKT human
model and BKT random model give around 6 to 7 prob-
lems in each type. The number of problems given by the
BKT random model is slightly higher than those given by
the BKT human model given the fact that simulated students
do not have prior knowledge as human students do. These
findings suggest that BKT is stopping much earlier than the
streak model, indicating that it might have better efficiency.

To get a better sense of the overall differences between
BKT (BKT random), Streak, and Random, we plotted the
overall learning curves for the data from these models, see
Figure 3. We can see from this figure that the BKT model
stops giving practice earlier than the Streak model, which
subsequently stops giving practice earlier than the Random
model. This graph also suggests that BKT seems to stop



Figure 4: An overview of the predicted probability that students can give correct response when the training ends. X-axis listed
each KC and Y-axis is the predicted probability.

Figure 5: Students’ process in completing the training and
the related learning curve for the skill “Answer Denomina-
tor” in “Add Different” (AD) type. The bars correspond to
the number of students at each opportunity and the line cor-
responds to error rate.

giving students practice right at the point where learning
starts to plateau. To evaluate the probability students will get
each skill correct at the point where the model assumes they
have reached mastery, we applied the AFM model (a type of
mixed-effect regression model) to predict performance at the
final opportunity. Figure 4 shows the average predicted cor-
rectness (across students) at the final opportunity for each
skill. Unfortunately, this graph shows that the BKT model
appears to be assuming students have mastered skills well
before the AFM model thinks they should.

To investigate further, we plotted a learning curve for the
skill where BKT did the worst at estimating mastery, the

“AD Answer Denominator” skill. Figure 5 shows the learn-
ing curve for this skill paired with a bar graph showing how
many students have still not achieved mastery at each point.
What this graph displays is that BKT is assuming some stu-
dents achieve mastery starting at the fourth opportunity, even
though the students error rates are still quite high. When
we investigated this issue further, we discovered that there
was an error in the AL architecture’s implementation of the
BKT model that would incorrectly update all the skills re-
lated to a particular problem type (AD, AS, M) whenever a
any step was taken; e.g., the AD answer denominator step
was updated when the AD answer numerator was taken (or
any other AD step). While we did not expect this underly-
ing issue with our BKT implementation, we argue that this
demonstrates the utility of using simulated agents to test
these knowledge tracing approaches prior to a more costly
classroom deployment.

To further investigate whether generating BKT param-
eters from simulation when no human-student data is yet
available, we did a correlation analysis between the param-
eters of BKT random and BKT human. Figure 6 shows that
there’s a positive correlation of around 0.65 in the “Learn”
parameter, which means the simulated students generated by
Apprentice Learner have a similar learning rate as the human
students. We argue that this is one of the harder parameters
to set (it determines roughly how much practice each prob-
lem should receive). The “pInit” parameter (P (L0()) was
near 0 for all skills in the simulated data set because all sim-
ulated agents start off without any prior knowledge of frac-
tions. In human data, this parameter will vary based on the
learning context (e.g., students in different grades will likely
result in different estimates of P (L0()). The “Guess” and
“Slip” parameters based on the simulated data were reason-
able (both greater than 0), but exhibited no notable correla-
tion with the human guess and slip values. Taken together,



Figure 6: There’s a positive correlation in the “Learn” pa-
rameter for BKT model between Random-based BKT pa-
rameters and Human-based BKT parameters.

we argue that this approach shows promise as a way to iden-
tify initial parameters values for the BKT model, but more
research is needed to explore this idea.

Related Works
The closest work to ours is the simulation studies conducted
by Doroudi and Brunskill (2019). They noted that while
the adaptivity provided by knowledge tracing makes it sub-
stantially more equitable than treating all the students with
the same training load, the knowledge tracing (BKT) algo-
rithm can still be inequitable. They argued that when the
student model makes incorrect assumptions about student
learning, regardless of the model predicting almost all the
students had mastered the skill, lower performing students
still tended to achieve lower posttest scores. This result par-
tially coincides with our findings. Figure 5 shows that some
students started to drop off after the third opportunity, where
the error rate is 77%. While when the algorithm decides
training can stop, two students haven’t yet mastered the skill.
One of the major differences between their approach and
ours is that they use statistical models that predict correct-
ness rather than computational models of learning that actual
perform the task, as we do with AL agents.

Conclusions and Future Work
From the experiments we have conducted, we found that we
were able to successfully apply simulated students to A/B
test different knowledge tracing models. When we compared
the two knowledge tracing models (BKT and Streak) to a no-
knowledge-tracing baseline (Random), we found that BKT
gave the fewest problems, streak gave the second fewest, and
Random gave the most. Our results suggested that BKT was
estimating that students had achieved mastery even though
their error rates were still high. Upon further inspection, our
simulated experiments revealed that there was an implemen-
tation error in our BKT model that was causing it to in-
correctly estimate student mastery. We argue that this is a
positive outcome for our simulated student approach, sug-
gesting that it was able to successfully highlight issues in

our BKT implementation. It is worth noting that this BKT
implementation has been used in CMU LearnLab summer
school workshops for the past two years and has not yet been
detected. In subsequent work, we plan to re-run our analyses
with a corrected BKT implementation, to further investigate
the BKT model and how it compares to the Streak model in
online settings.

Our analysis also found evidence to support the idea that
simulated student data might be used to initialize BKT pa-
rameters when no human-student data is available. In par-
ticular, we found that BKT learning rates estimated from
simulated data have a significant correlation to the learning
rates estimated from human data. While these initial results
are promising, more work is needed to further explore these
ideas. In particular, we would like to try running human-
subject experiments to compare BKT models initialized us-
ing simulated student data to those with default parameters.

We have a number of additional future directions we
would like to explore. First, we intend to individualize the
AL models to make it better mimic the behaviors of different
kinds of students (e.g., high vs. low performing students).
Second, we would like to explore ways outputting skill de-
pendency models from AL agents (Maclellan et al. 2020),
such as identifying which skills should be practiced before
others. Finally, we should move beyond simulation and ex-
plore how well our simulated students predict which knowl-
edge tracing approaches yield the best learning (by running
comparable human studies).
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