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This work employs a computational model from the Apprentice Learner Architecture (MacLellan & cxplanaory Operators Ratatora Knowicioe —**T State
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Context: This study used the fractions tutor and E : | Context: This study used a boxes and arrows tutor 3L/ lt7)f {3 /17
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, , + : numbers is easier than fractional numbers). N\a >
Discussion: These results are a clear example of o | . T (<] 7 -
how tutor A/B experimental results can be po——— Findings: Our mpdel correctly predicts the main ===
oredicted in a completely theory-driven way using Two Tutor Experimental Conditions effect and learning curve trends, even though all the Casy Rule: 3+ 2 - x -5 x < 5
a computational model of learning. o T eeeeeeremmmmmm |  hypotheses are equally easy for the agent to use. 51”;'23..:?5;35:??;55.’;‘14
Discussion: Our results suggests that
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